How to cite
A paper that describes ViruClust is currently under preparation.
If you use ViruClust or use screenshots generated with it
please do ensure you credit our website (providing a link back to http://geco.deib.polimi.it/viruclust_gisaid/)
If you use VirusViz, please cite: A. Bernasconi, A. Gulino, T. Alfonsi, A. Canakoglu, P. Pinoli, A. Sandionigi, S. Ceri. VirusViz: Comparative analysis and effective visualization of viral nucleotide and amino acid variants. Nucleic acids research, 2021. https://doi.org/10.1093/nar/gkab478 If you use data extracted from ViruSurf application, you may cite: A. Canakoglu, P. Pinoli, A. Bernasconi, T. Alfonsi, D.P. Melidis, S. Ceri. 2021. ViruSurf: an integrated database to investigate viral sequences. Nucleic acids research, 49(D1), pp.D817-D824. https://doi.org/10.1093/nar/gkaa846 If you used the data model, you may cite: A. Bernasconi, A. Canakoglu, P. Pinoli, S. Ceri. 2020, November. Empowering Virus Sequence Research Through Conceptual Modeling. In International Conference on Conceptual Modeling (pp. 388-402). Springer, Cham. https://doi.org/10.1007/978-3-030-62522-1_29 |
Contacts
Prof. Stefano Ceri
Principal Investigator, Concept Design |
Luca Cilibrasi
Main Development |
Dr. Pietro Pinoli
Project Leadership |
Dr. Arif Canakoglu
Support Development |
Dr. Anna Bernasconi
Examples, Storytelling, Testing, Concept Design |
Dr. Matteo Chiara
Use cases, Testing |
Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Via Ponzio 34/5 Milano 20133 Milano Italy |
Third-party software
Acknowledgements
GISAID data acknowledgementWe are grateful to the data contributors who shared the data used in this Web Application via the GISAID Initiative*: the Authors, the Originating Laboratories responsible for obtaining the specimens, and the Submitting Laboratories that generated the genetic sequences and metadata.* Elbe, S., and Buckland-Merrett, G. (2017) Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Challenges, 1:33-46. DOI: 10.1002/gch2.1018 |
Resources acknowledgementsWe also acknowledge the support from Amazon Machine Learning Research Award "Data-driven Machine and Deep Learning for Genomics". |